Search results for "iron homeostasis"

showing 9 items of 9 documents

Copper and iron homeostasis inArabidopsis: responses to metal deficiencies, interactions and biotechnological applications

2007

Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants. Furthermore, gene expression analyses are deciphering coordinated mechanisms of regulation and response to copper and iron limitation…

Regulation of gene expressionchemistry.chemical_classificationbiologyPhysiologychemistry.chemical_elementPlant Sciencebiology.organism_classificationCopperCell biologyMetalIron homeostasischemistryArabidopsisvisual_artBotanyMetalloproteinvisual_art.visual_art_mediumArabidopsis thalianaIron deficiency (plant disorder)Plant, Cell & Environment
researchProduct

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

2020

The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHL…

0106 biological sciences0301 basic medicineArabidopsis thalianaPlant Sciencelcsh:Plant culture01 natural sciencesHigh affinity copper importer 103 medical and health sciencesIron homeostasisCopper uptakeArabidopsisIron homeostasisBIOQUIMICA Y BIOLOGIA MOLECULARmedia_common.cataloged_instanceArabidopsis thalianalcsh:SB1-1110European unionmedia_commonbiologyChemistryHigh affinity copper transportbiology.organism_classificationCell biologyMetal mobilization030104 developmental biologyChristian ministryMetal mobilizationMetal interactions010606 plant biology & botany
researchProduct

Iron regulatory mechanisms in Saccharomyces cerevisiae

2020

Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in many cellular processes. However, excess iron can damage cells since it promotes the generation of reactive oxygen species. The budding yeast Saccharomyces cerevisiae has been used as a model organism to study the adaptation of eukaryotic cells to changes in iron availability. Upon iron deficiency, yeast utilizes two transcription factors, Aft1 and Aft2, to activate the expression of a set of genes known as the iron regulon, which are implicated in iron uptake, recycling and mobilization. Moreover, Aft1 and Aft2 activate the expression of Cth2, an mRNA-binding protein that limits t…

Microbiology (medical)DNA damageSaccharomyces cerevisiaelcsh:QR1-502Saccharomyces cerevisiaeMicroorganismesyeastMicrobiologylcsh:Microbiology03 medical and health sciencesTranscriptional regulationiron deficiencyFongsiron metabolismPost-transcriptional regulationTranscription factorGene030304 developmental biology0303 health sciencesbiology030306 microbiologyChemistryPost-transcriptional regulationiron excessbiology.organism_classificationYeastCell biologyCytosolReguloniron homeostasisFerro
researchProduct

Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron upt…

2009

Abstract Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition …

0106 biological sciencesroots[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyPhysiologytoxic metalscadmiumNitrogen assimilationArabidopsischemistry.chemical_elementPlant ScienceNitrate reductase01 natural sciencesNitric oxide03 medical and health scienceschemistry.chemical_compoundArabidopsisGeneticsArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyplasma membrane transporter2. Zero hunger0303 health sciencesCadmiumbiologyAtNOA1ACLNitric oxideMetabolismbiology.organism_classificationNitric oxide synthasechemistryBiochemistrybiology.proteiniron homeostasis010606 plant biology & botany
researchProduct

Iron Regulatory Mechanisms in Saccharomyces cerevisiae

2020

Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in many cellular processes. However, excess iron can damage cells since it promotes the generation of reactive oxygen species. The budding yeast Saccharomyces cerevisiae has been used as a model organism to study the adaptation of eukaryotic cells to changes in iron availability. Upon iron deficiency, yeast utilizes two transcription factors, Aft1 and Aft2, to activate the expression of a set of genes known as the iron regulon, which are implicated in iron uptake, recycling and mobilization. Moreover, Aft1 and Aft2 activate the expression of Cth2, an mRNA-binding protein that limits t…

Transcriptional regulationPost-transcriptional regulationIron deficiencyIron homeostasisSaccharomyces cerevisiaeIron metabolismIron excessYeast
researchProduct

Analysis of the cross‐regulation between immunity, growth and iron homeostasis in plants

2019

The existence of a tightly regulated balance between growth and immunity in plants has recently emerged. In this study, we challenged this concept thanks to the biological model pyoverdine-Arabidopsis thaliana. Pyoverdine is a siderophore produced by the plant growth promoting rhizobacteria Pseudomonas fluorescens C7R12. Under iron deficiency, P. fluorescens excretes the iron free form of pyoverdine (apo‐pyo) in the soil. Once chelated with iron (ferri‐pyo), the complex is internalized by the bacteria. We demonstrated that Arabidopsis thaliana plants treated by apo‐pyo in a medium containing or not iron internalize pyoverdine. Interestingly, apo‐pyo-treated plants did not show a typical gro…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencespyoverdine[SDV]Life Sciences [q-bio]fungiarabidopsis thaliana[SDE]Environmental Sciencesfood and beverages[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyiron homeostasisplant immunitypseudomonas fluorescens
researchProduct

Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings

2013

[EN] Copper is an essential micronutrient in higher plants, but it is toxic in excess. The fine adjustments required to fit copper nutritional demands for optimal growth are illustrated by the diverse, severe symptoms resulting from copper deficiency and excess. Here, a differential transcriptomic analysis was done between Arabidopsis thaliana plants suffering from mild copper deficiency and those with a slight copper excess. The effects on the genes encoding cuproproteins or copper homeostasis factors were included in a CuAt database, which was organised to collect additional information and connections to other databases. The categories overrepresented under copper deficiency and copper e…

ArabidopsisBiophysicsFunctional homologchemistry.chemical_elementCircadian clockTransporterBiochemistryBiomaterialsTranscriptomeSuperoxide dismutaseStomatal closureGene Expression Regulation PlantIron homeostasisArabidopsisThalianamedicineHomeostasisArabidopsis thalianaGeneOligonucleotide Array Sequence AnalysisGeneticsDose-Response Relationship DrugbiologyArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionSuperoxide DismutaseProteinMetals and AlloysBindingMicronutrientbiology.organism_classificationmedicine.diseaseCopperDNA-Binding ProteinschemistryBiochemistrySeedlingsChemistry (miscellaneous)biology.proteinFeedback loopTranscription factorTranscriptomeCopper deficiencyCopperTranscription FactorsMetallomics
researchProduct

Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.

2013

International audience; The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it dis…

0106 biological sciences[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyMESH : Azetidinecarboxylic AcidFMN ReductaseArabidopsis thalianaMutantArabidopsisGene ExpressionPlant Science01 natural sciencesMESH : Cation Transport ProteinsMESH : IronMESH : Arabidopsis ProteinsNicotianamine synthaseMESH : Plants Genetically Modifiedchemistry.chemical_compoundMESH : ArabidopsisGene Expression Regulation PlantGene expressionMESH: Genes PlantArabidopsis thalianaMESH : DNA BacterialHomeostasisMESH: ArabidopsisNicotianamineMESH: Stress PhysiologicalCation Transport ProteinsMESH : Adaptation PhysiologicalMESH : Cadmium2. Zero hungerchemistry.chemical_classification0303 health sciencesCadmiumMESH: IronbiologyGeneral MedicineIron DeficienciesPlants Genetically ModifiedAdaptation PhysiologicalMESH: Azetidinecarboxylic AcidMESH : PhenotypePhenotypeBiochemistryMESH: HomeostasisMESH : HomeostasisMESH : MutationAzetidinecarboxylic AcidCadmiumDNA BacterialMESH: Gene ExpressionMESH: MutationIronMESH: Cadmiumchemistry.chemical_elementMESH: FerritinsMESH: Arabidopsis ProteinsMESH: Alkyl and Aryl TransferasesGenes PlantMESH: PhenotypeNicotianamine synthase03 medical and health sciencesMESH: Cation Transport ProteinsStress PhysiologicalIron homeostasisGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIron deficiency (plant disorder)MESH: Gene Expression Regulation PlantMESH : Genes PlantMESH : Alkyl and Aryl TransferasesMESH : Stress Physiological030304 developmental biologyMESH : FMN ReductaseAlkyl and Aryl TransferasesArabidopsis ProteinsIron deficiencyNitric oxideNicotianaminebiology.organism_classificationMESH: Adaptation PhysiologicalMESH: DNA BacterialMESH : Gene ExpressionEnzymechemistryMESH: FMN ReductaseMESH: Plants Genetically ModifiedFerritinsMutationbiology.proteinMESH : FerritinsAgronomy and Crop ScienceMESH : Gene Expression Regulation Plant010606 plant biology & botany
researchProduct

A New Potential Dietary Approach to Supply Micronutrients to Physically Active People through Consumption of Biofortified Vegetables

2022

Micronutrients are required in many reactions involved in physical activity and exercise. Most physically active people do not meet the body’s needs in terms of micronutrients through diet. The novelty of the present manuscript is the use of an innovative dietary approach to supply micronutrients to physically active people through biofortified food. Therefore, the key point of this study was to verify whether supplementation with biofortified vegetables—and specifically molybdenum (Mo)-enriched lettuce—in healthy volunteers affects essential regulators of body homeostasis and, specifically, hematological parameters, iron and lipid metabolism, and hepatic function. Twenty-…

MolybdenumNutrition and DieteticsAnemia Iron-DeficiencyIronTransferrinvegetarian dietsDietdietary supplementsmicronutrientsVegetablesHumansiron homeostasisdietary supplements; micronutrients; molybdenum; vegetarian diets; iron homeostasisFood ScienceNutrients
researchProduct